高功率单频掺铒光纤激光技术研究进展(特邀)

程 鑫^{1,2},姜华卫¹,冯 衍^{1,3*}

(1. 中国科学院上海光学精密机械研究所,上海 201800;

2. 中国科学院大学 材料科学与光电工程中心, 北京 100049;

3. 国科大杭州高等研究院,浙江杭州 310024)

摘 要:近年来,在相干探测、激光雷达、激光冷却以及引力波探测等领域应用需求的驱动下,窄线宽、 低噪声的高功率单频掺铒光纤激光技术成为国内外光纤激光技术领域的研究热点。简要介绍了近些 年高功率单频掺铒光纤激光技术的研究进展,包括单频掺铒光纤激光器和高功率单频掺铒光纤放大 器,分析了高功率单频掺铒光纤激光的发展趋势和面临的挑战,并对下一步的发展方向进行了展望。 关键词:光纤激光;单纵模;掺铒光纤激光器;单频光纤放大器 中图分类号:TN248 文献标志码:A DOI: 10.3788/IRLA20220127

Research progress of high-power single-frequency erbiumdoped fiber laser technology (*Invited*)

Cheng Xin^{1,2}, Jiang Huawei¹, Feng Yan^{1,3*}

(1. Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;

2. Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China;

3. Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China)

Abstract: In recent years, high-power single-frequency (SF) erbium-doped fiber lasers with narrow linewidth and low noise have been intensively studied, driven by application requirements in the fields of coherent detection, lidar, laser cooling and gravitational wave detection. The research progresses of high-power SF erbium-doped fiber lasers were reviewed in this paper, including SF erbium-doped fiber lasers and high-power SF erbium-doped fiber amplifiers. The development trend and challenges of the high-power SF erbium-doped fiber lasers were analyzed, and the next development direction was prospected.

Key words: fiber laser; single longitudinal mode; Er-doped fiber laser; single-frequency fiber amplifier

收稿日期:2022-02-24; 修订日期:2022-04-12

基金项目:国家重点研发计划 (2020YFB1805900, 2020YFB0408300)

作者简介:程鑫,男,博士生,主要从事单频光纤放大器技术方面的研究。

导师(通讯作者)简介:冯衍,男,研究员,博士,主要从事精密激光技术与非线性光学方面的研究。

0 引 言

掺铒光纤激光由于波长位于大气透射窗口和人 眼安全波段而具有极高的研究意义和应用潜力,一直 是激光技术的研究热点^[1]。近些年,得益于光纤集成 器件工艺的成熟,高功率掺铒光纤激光获得迅猛发 展,当前在基础研究、光纤通信和医疗等领域发挥着 重要应用。与此同时,单频光纤激光,即运行在单纵 模下的激光,因具有窄线宽、低噪声等优异性能在相 干光通信、激光雷达、光谱合成、激光冷却、原子捕 获和引力波探测等领域有着非常广阔的应用前景。

单频光纤激光器的实现方式有两大类:基于行波 腔并结合窄带滤波器的单频激光结构和基于驻波腔 的单频激光结构。前者腔长较长,结构复杂且容易出 现跳模现象;相对而言,后者腔长短,结构简单,模式 稳定,但腔长严格限制了增益光纤长度,往往需要铒 离子高掺杂浓度光纤作为增益介质。但是单掺铒光 纤中离子团簇严重影响其掺杂浓度^[2],往往采用多组 分光纤来提高铒离子掺杂浓度。基于此方案的单频 掺铒光纤激光器虽然已经获得了数百毫瓦的功率输 出,但尚不满足某些领域的应用,功率的进一步提升 需要采用主振荡功率放大(MOPA)方案。

在高功率单频光纤放大器方面,受激布里渊散射 (SBS)是限制功率提升的主要因素,通常采用增大光 纤纤芯模场面积、缩短光纤长度、对光纤施加梯度温 度或应力等方式提高其阈值。与其他单掺杂光纤有 所不同的是,掺铒光纤中通常采用镱离子共掺方式提 高铒离子的掺杂浓度并增加泵浦吸收系数。在铒镱 共掺光纤放大器 (EYDFA)中,1 μm 波段的放大自发 辐射 (ASE)是限制功率进一步增加的另一重要因 素。针对此问题,已发展出众多方法,例如非峰值 (off-peak)泵浦、共种子 (co-seeding)泵浦以及同带 (in-band)泵浦等。

近年来,随着光纤激光技术的发展完善,单频掺 铒光纤激光技术在高功率、窄线宽以及波长拓展等方 面取得了重大进展。文中首先从行波腔和驻波腔两 种腔型介绍了单频掺铒光纤激光器的发展现状;然后 分别介绍了脉冲和连续两种不同工作模式下高功率 单频掺铒光纤放大器的研究进展,分析了高功率单频 掺铒光纤激光的发展趋势和面临的挑战;最后对该方 向的进展进行了总结,并对单频掺铒光纤激光技术下 一步的发展方向做了展望。

1 单频掺铒光纤激光器

产生单频激光的关键技术是建立一个单纵模运转的激光谐振腔,根据运行方式可分为行波腔和驻 波腔。

1.1 行波腔结构

行波腔,采用较长的腔体,通过窄带滤波装置实 现单纵模运转,典型装置如图1所示^[3]。采用额外的 非泵浦掺铒光纤作为可饱和吸收体,当激光在此段光 纤中干涉时引起驻波饱和效应,形成瞬态带通光栅滤 波器,从而保证了稳定的单频激光运转。行波腔中无 源可调谐滤波器可以提供粗波长选择,调谐范围比较 宽。表1列出了基于行波腔结构的单频掺铒光纤激 光器研究成果^[4-15]。

图 1 典型行波腔掺铒光纤激光器的原理示意图

Fig.1 Schematic diagram of a typical traveling wave cavity erbiumdoped fiber laser

1990年,英国南安普顿大学的 Morkel 等在环形 腔中通过控制激光单向运转消除空间烧孔效应,首次 实现了掺铒光纤的单频 1555 nm 激光输出^[4]。输出 功率为1 mW、线宽小于60 kHz。1991年,美国 Telcordia Technologies 的 Smith 等报导了在腔内插入声光滤波 器实现了高达 40 nm 范围连续可调的单频掺铒光纤 激光输出,中心波长在 1545 nm,输出功率 2 mW,激 光线宽为 10 kHz^[6]。由于行波腔对温度漂移和其他 外界干扰的高灵敏度,激光模式不易稳定。

为改善行波腔掺铒单频激光器的跳模现象,可以 通过引入可饱和吸收体来减少模式跳变。1994年,南 安普顿大学的 Cheng 等人首次采用未泵浦的掺铒光 纤作为可饱和吸收体实现稳定无跳模的单频掺铒光 纤激光输出,中心波长为 1535 nm,线宽为 0.95 kHz, 红外与激光工程 www.irla.cn

表1 行波腔单频掺铒光纤激光器研究进展

Tab.1 Research progress of single-frequency erbium-doped fiber lasers with traveling-wave cavity

Structure	Fiber type	Year	Institution	Wavelength/nm	Power/mW	Linewidth/kHz	Ref.
Traveling-wave cavity	Phosphor-alumino- silicate fiber	1990	University of Southampton	1 555	1	<60	[4]
	Silica fiber	1990	NTT Transmission Systems Laboratories	1 549.3-1 552.1	1.3	<1.4	[5]
	Silica fiber	1991	Telcordia Technologies	1 525-1 565	2	10	[<mark>6</mark>]
	Silica fiber	1991	Alcatel-Lucent	1 528-1 572	0.32	10	[7]
	Silica fiber	1991	AT&T Bell Laboratories	1 530-1 575	3	<5.5	[<mark>8</mark>]
	Silica fiber	1994	University of Southampton	1 535	6.2	< 0.95	[<mark>9</mark>]
	Silica fiber	2001	University of Southern California	1 522-1 562	10	0.75	[10]
	Silica fiber	2003	EXFO Electro-Optical Engineering	1 510-1 580	0.5	-	[11]
	Silica fiber	2005	National Chiao Tung University	1 482-1 512	1.3	-	[12]
	Silica fiber	2005	National Chiao Tung University	1 480.6-1 522.9	10	-	[13]
	Phosphate fiber	2005	University of Arizona	1 535	1 000	-	[14]
	Silica fiber	2008	Shanghai Jiao Tong University	1 565	867	-	[15]

输出功率 6.2 mW ^[9]。

此前的大部分报道都集中在C波段和部分L波段,而发展S波段的单频掺铒激光对于拓宽通信通道具有重要意义。2005年,National Chiao Tung University的 Chien等人首次报导了S波段单频掺铒光纤环形 腔激光器,可调谐范围覆盖1482~1512 nm,输出功率在1.3 mW^[12]。同年该组人员将此波段单频掺铒光纤环形 死形腔激光器输出功率提升到10 mW^[13]。

此外还可以采用复合腔结构改善激光模式。复 合腔激光器是由两个或者多个子腔组成,只允许一个 满足所有子腔共振条件的激光纵模运转。为了实现 这一目的,必须使各子腔之间不对称,即采用不同的 腔长配置,从而延长激光的有效自由光谱范围,在过 去的 10 多年里,有很多关于这一主题的报道^[16-23]。

但是受光纤中铒离子低掺杂浓度的制约,直接从 环形腔输出的单频激光功率较低。直到 2005 年,美 国亚利桑那大学的 Polynkin 等利用高掺铒磷酸盐光 纤作为增益介质将环形腔单频激光器输出功率突破 瓦量级,实现了 700 mW 输出功率下完全无跳模,但 更高功率下仍有跳模发生^[14]。2008 年,上海交通大 学 Yang 等人在环形腔内加入放大结构获得了输出功 率高达 867 mW 的单频激光^[15],这也是国内首次报导 如此高功率的单频掺铒光纤激光器。

1.2 驻波腔结构

根据结构区别,驻波腔分为分布反馈式 (DFB) 和

分布布拉格反射式 (DBR) 两种腔型。

DFB 结构是将光纤布拉格光栅 (FBG) 直接写入 有源光纤中,在光栅区域的中间引入相位变化,如 图 2 所示^[3]。该结构可以作为一个超窄光谱滤波器 来实现单频运转。然而,一方面由于腔长较短,另一 方面在高泵浦功率下,相移光纤光栅腔内存在着严重 的热效应,导致光栅折射率发生变化,进而导致光栅 失相,致使单频 DFB 光纤激光器输出功率有限。

Fig.2 Structure diagram of erbium-doped DFB fiber laser [3]

图 3 显示了 DBR 单频光纤激光器的典型结构^[3], 该激光腔由一对窄带 FBG 与一段掺铒光纤组合而 成,具有结构简单、紧凑等优点。对于单频运转工作, 掺铒光纤的长度通常限制在几厘米,同样要求光纤具 有较高的增益系数。

近年来,国内华南理工大学、天津大学和国防科 技大学多个课题组先后对 DBR 单频光纤激光器的研

Fig.3 Structure diagram of erbium-doped DBR fiber laser [3]

究进展作了综述性报道^[24-27],这里针对驻波腔单频掺 铒光纤激光器研究进展作简单说明。表 2 列出了近 年来基于驻波腔结构的单频掺铒光纤激光器的研究 成果^[28-39]。

表 2 驻波腔单频掺铒光纤激光器研究进展

Tab.2 Research progress of single-frequency erbium-doped fiber lasers with standing-wave cavity

Structure	Fiber type	Year	Institution	Wavelength/nm	Power/mW	Linewidth/kHz	Ref.
DBR	Silica fiber	1991	United Technologies Research Center	1 548	5	<47	[28]
DBR	Silica fiber	1994	United Technologies Research Center	1 525-1 557	3	-	[<mark>29</mark>]
DBR	Phosphate fiber	2016	South China University of Technology	1 527-1 563	2.5	<0.7	[30]
DBR	Phosphate fiber	2017	South China University of Technology	1 603	20	1.9	[31]
DBR	Phosphate fiber	2003	NP Photonics	1 535	100	<2	[32]
DBR	Phosphate fiber	2004	NP Photonics	1 560	>200	<2	[33]
DBR	Phosphate fiber	2005	University of Arizona	1 535	1 900	-	[34]
DBR	Phosphate fiber	2005	University of Arizona	1 550	1 600	-	[35]
DFB	Phosphate photonic crystal fiber	2006	University of Arizona	1 534	2300	-	[<mark>36</mark>]
DBR	Phosphate fiber	2010	Shanghai Institute of Optics and Fine Mechanics, CAS	1 535	100	<5	[37]
DBR	Phosphate fiber	2010	South China University of Technology	1 535	306	1.6	[<mark>38</mark>]
Linear cavity	Silica fiber	2001	Electronics and Telecommunications Research Institute	1 525-1 565	0.08	<4.6	[39]

第一个 DBR 结构的单频掺铒光纤激光器早在 1991 年被演示^[28],利用掺铒锗铝硅酸盐光纤作为增益 介质,但受铒离子浓度制约,激光输出功率只有 5 mW。在波长拓展方面,1994 年,美国 United Technologies Research Center 的 Ball 等人通过对增益光纤施 加纵向应力实现了 32 nm 的可调谐单频激光输出, 覆盖 1525~1557 nm 波长范围^[29]。2017 年,华南理工 大学 Yang 等人报道了利用 1.6 cm 铒镱共掺磷酸盐光 纤作为增益介质的 DBR 单频激光器,通过优化光栅 参数获得了输出功率为 20 mW、线宽为 1.9 kHz 的 1603 nm 单频激光,这也是首次实现 1600 nm 以上波 长的单频掺铒光纤激光器^[31]。

驻波腔结构单频掺铒光纤激光器的功率提升主 要得益于铒镱共掺磷酸盐光纤的发明。2003年,美 国 NP Photonics 公司 Spiegeberg 等基于高浓度铒镱共 掺磷酸盐光纤首次报道了百毫瓦功率量级的单频掺 铒光纤激光器^[32],工作波长为1535 nm,线宽小于 2 kHz,并于次年将单频激光功率提升到200 mW^[33]。 随着共掺双包层磷酸盐光纤和包层泵浦技术的发展, 驻波腔单频掺铒光纤激光器输出功率提升到瓦量 级^[34-35]。

2 高功率单频掺铒光纤放大器

虽然单频光纤激光器已经获得高达瓦量级的激 光输出,但受腔长和热效应的限制,功率的进一步提 升必须采用 MOPA 方案。下面分别就脉冲和连续两 种不同工作模式介绍高功率单频掺铒光纤放大器的 最新研究进展。

2.1 脉冲单频掺铒光纤放大器

脉冲单频掺铒光纤激光在激光测距、光纤传感和 相干激光雷达等领域有着不可替代的应用。考虑到 单频激光器的单纵模振荡特性,实现脉冲工作的直接 方法是周期性地切换腔的损耗,即调Q光纤激光器。

早在 2004年,美国 NP Photonics 公司的 Kaneda 等通过在 DBR 腔内加入压电陶瓷 (PZT) 来产生压致 双折射,主动调 Q实现了峰值功率为 25 W、脉宽 12 ns 的 1550 nm 脉冲单频激光输出^[40]。2012年,美 国伊利诺伊大学 Zhou 等人报告了一种连续单频激光 注入的环形腔主动调 Q 脉冲单频掺铒激光器^[41]。同 年,东南大学 Wan 等在参考文献 [42] 中进行了类似 的工作,通过控制环形腔内增益大小和耦合器的耦合 比来实现调 Q,实现了线宽 7 kHz、峰值功率 40 W 的 1550 nm 纳秒激光。 除了Q开关,还有其他方案可以实现单频掺铒光 纤激光在脉冲模式下工作。最简单的方法是利用脉 冲激光源泵浦单频激光腔。例如,Barmenkov等在参 考文献 [40] 中报道了利用脉冲调制后的泵浦激光器 泵浦 DBR 结构的单频掺铒光纤激光器,实现了线宽 约为 500 kHz 的单频脉冲激光输出。此外,利用外部 声光调制器 (AOM) 或电光调制器 (EOM) 直接调制连 续波单频激光器的强度也是获得脉冲源的一种方 法^[43-44]。但其缺点是外部调制器的传输损耗大,损伤 阈值低,从而限制了脉冲激光器的峰值功率。

2009年,美国 NP Photonics 公司的 Shi 等人利用 参考文献 [40] 中相同的方法研制了一种 1538 nm 调 QDBR 结构的单频掺铒光纤激光器,输出脉冲宽度 为 160 ns, 重复频率为 20 kHz。利用上述 DBR 结构 的激光器作为种子源,采用三级掺铒光纤放大器组成 的 MOPA 系统,实现了单脉冲能量为 54 uJ、峰值功 率为 332 W 的单频保偏脉冲激光输出。其中第三级 采用 12 cm 长、芯/包层直径为 15/125 μm 的保偏铒镱 共掺磷酸盐光纤作为增益介质来抑制放大过程中的 SBS 效应^[45]。并于次年在此结果基础上增加第四级 保偏铒镱共掺磷酸盐光纤放大器(芯/包层直径为 25/400 µm), 在 1530 nm 波长实现了单脉冲能量为 0.126 mJ、峰值功率 1.2 kW 单频脉冲输出,并指出此 放大器可以工作在C波段任意波长^[40]。更进一步, 该课题组利用相同结构将1550 nm 波段脉冲单频光 纤激光器峰值功率提高到 128 kW.3 ns 脉冲下单脉冲 能量可达 0.38 mJ^[47]。类似的, 2011 年, 中国科学院上 海光学精密机械研究所 Liu 等采用三级 MOPA 结构 (第三级采用 6 m 芯/包层直径为 25/300 µm 大模场铒 镱共掺光纤)放大 AOM 调制的单频脉冲激光,得到 了平均功率为 1.16 W、单脉冲能量为 116 μJ 的全光 纤单频 1533 nm 激光脉冲输出^[48]。2018年,美国 AdValue Photonics 公司 W. Lee 等人采用纤芯直径为 45 µm 大模场高浓度铒镱共掺硅酸盐光纤作为增益介 质,将1572 nm波长处单频脉冲激光的能量提升至 1.8 mJ 的高记录水平^[49]。

虽然大模场光纤能有效提高 SBS 阈值,但其允许 高阶横模的传输,降低了输出激光光束质量。提高 SBS 阈值的另外一种方法是沿增益光纤施加梯度温 度或应力致使 SBS 增益谱产生频移,使其在增益光纤 中不能得到有效放大。如 2014年中国科学院上海光 学精密机械与物理研究机所 Zhang 等在芯径为 10 μm 的保偏铒镱共掺光纤上施加纵向梯度应力将 SBS 阈 值提高 3.4 倍,实现了重频 10 kHz、脉宽 200 ns、峰值 功率 361 W 衍射极限的单频 1540 nm 激光输出^[50]。 这也是基于 10 μm 纤芯直径的单模窄线宽脉冲光纤 激光器的最高峰值功率。

2.2 高功率连续波单频掺铒光纤放大器

对于连续波单频掺铒 MOPA 激光器, 1994 年, 美国 Raytheon Technologies 公司的 Ball 等人基于 1480 nm激光二极管 (LD) 泵浦单掺铒光纤放大器结构, 首次演示了输出功率为 60 mW 单频掺铒光纤放大器^[51]。随后, 美国 E-TEK Dynamics 公司 Pan 等人利用类似的放大器结构实现了功率为 166 mW 的单频激光输出^[52]。

在掺铒光纤放大器中,通常采用铒镱共掺光纤作 为增益介质,其中镱离子具有敏化作用,并有助于提 高铒离子的掺杂浓度。镱离子吸收带宽覆盖较大波 长范围,有利于采用成熟的高功率 9xx nm 二极管激 光泵浦。图 4 总结了近 20 年来连续单频掺铒光纤放 大器功率发展进程的代表性工作^[53-69]。

图 4 高功率连续波单频掺铒光纤放大器的功率发展进程

Fig.4 Power development process of high-power continuous-wave single-frequency erbium-doped fiber amplifiers

2003年,南安普顿大学 Alam 等采用 915 nm LD 泵浦 100 μm 芯径的 EYDF 报道了第一个瓦量级单频 掺铒光纤放大器^[70]。并于同年采用两级放大将单频 激光功率提升至 14 W^[54]。随后,同单位 Alegria 等报 道了 83 W 连续单频 1552 nm 掺铒光纤放大器^[55]。 主放大器采用 3.5 m D 型大模场铒镱共掺磷酸盐光 纤,975 nm LD 作为泵浦激光。在 250 W 最高泵浦功 率下获得了最高 83 W 单频激光输出,斜率效率约为 34%。激光 M² 因子为 2.0,非衍射极限输出特性是由 于大芯光纤和单模光纤在熔接点的模场不匹配导致 了高阶模产生。60 W 功率下,输出激光线宽相对 DFB 种子源未展宽。在最高输出功率下,增益光纤上 的高温负载导致涂覆层退化并最终导致了激光器损 坏。从 9xx nm 泵浦激光到 1.5 μm 信号光转换带来的 巨大量子亏损以热的形式耗散在系统中,这也是高功 率放大器中亟待解决的问题。

2005年,南安普顿大学 Jeong 等将连续单频掺铒 光纤放大器功率提高到 151 W^[56]。其光路结构如 图 5 所示,1530~1610 nm 可调谐单频种子激光经过 一级掺铒光纤放大器输出 1.8 W,空间耦合进入主放 大器。主放大器采用空间耦合的 975 nm LD 反向泵 浦 10 m 芯/包直径为 30/650 μm 的 EYDF。利用二向 色镜分离 1 μm 的 ASE。该系统在 473 W 泵浦功率下 实现了最高 151 W 单频 1563 nm 激光输出,斜率效率 约为 35 %,125 W 1546~1566 nm 范围内可调谐激光 输出。虽然大芯径光纤有效提高了 SBS 阈值,但高功 率下后向 1 μm ASE 功率可达 70 W,这无疑给系统稳 定性带来了隐患。

在铒镱共掺光纤放大器中,镱离子通过交叉弛豫 过程向铒离子传递能量。然而,此方案显著的问题是 1 μm 波段的 ASE(Yb ASE)及寄生振荡限制了功率的 提升。多年来,研究人员一直在积极寻找有效解决铒 镱共掺光纤中 Yb ASE 问题的方法。如使用专门设计 的长周期光纤光栅或光子晶体光纤来滤除 Yb ASE, 以及改变泵浦方式,如 off-peak 泵浦、co-seeding 泵浦 以及 in-band 泵浦等。滤除 Yb ASE 的方法无疑增大 了系统的能量损耗,并且给系统的热耗散带来较大的 挑战。下面主要介绍改变泵浦方式来抑制铒镱共掺 光纤放大器中 Yb ASE 的方法。

(1) Off-peak 泵浦

此方法是采用偏离 EYDF 吸收峰 (976 nm) 的激 光作为泵浦源, 典型的是的 915 nm 或 940 nm。较低 的吸收截面缓解了镱-铒能量转移的瓶颈问题, 从而 显著改善了 Yb ASE 问题。

基于此,华南理工大学 Yang 等在 2013 年采用 915 nm LD 包层泵浦 EYDF 报道了单级 10.9 W 线偏 振单频 1560 nm 全光纤 MOPA 激光器 ^[58]。2016 年, 美国 Bae Systems 公司 Creeden 等采用 940 nm LD 作 为泵浦激光对单频 1560 nm 光纤激光种子源进行放 大。其结构如图 6(a) 所示,主放大级采用 5 m 芯/包直 径为 25/300 µm 的 EYDF,在 410 W 泵浦功率下获得 了连续 207 W 的单频 1560 nm 光纤放大器 ^[61],斜率 效率达 50.5%,是 9xx nm LD 泵浦铒镱共掺光纤放大 器的最高效率,输出功率随泵浦功率曲线如图 6(b) 所 示。输出激光的 M² 为 1.05。

大模场铒镱共掺光纤在功率提升方面发挥了重要作用,但对于特殊应用,例如引力波探测,需要线偏振基横模输出的单频激光。2007年,德国汉诺威激光中心 Omar 等采用与参考文献 [61] 相同的结构报道了 100 W 线偏振 TEM₀₀ 模的单频 1556 nm 掺铒光纤放大器 ^[62]。

考虑到镱离子吸收截面在 10xx nm 波长下更小, 可以进一步缓解了镱-铒能量转移的限制。2018年, Omar 等首次报道了采用 1018 nm 光纤激光器纤芯泵

Fig.5 Structure diagram of continuous-wave single-frequency erbium-doped fiber amplifier with 151 W output power [56]

Fig.6 Single-frequency EYDF amplifier with off-peak pumping scheme. (a) Diagram of structure; (b) Diagram of power curve^[61]

浦的全光纤连续单频铒镱共掺 1556 nm 放大器。采 用小于 2 m 长的铒镱共掺光纤获得了超过 11 W 的激 光输出,效率超过 48%。此泵浦方式对 Yb ASE 起到 了很好的缓解作用,结合高质量1018 nm 光纤激光器 有望实现更高功率单频掺铒光纤激光输出^[71]。

总体来说, off-peak 泵浦方案需要较长的 EYDF, 不利于抑制 SBS; 而且随着泵浦功率的增加, Yb ASE 问题仍然不可避免。

(2) Co-seeding 泵浦

该方式是在泵浦端引入辅助信号光或加入 1 μm FBG 回收镱离子发射带能量。典型的方案是将 1 μm 波段激光与 1.5 μm 波段单频激光共同注入铒镱共掺 光纤放大器中,在输出端分光后得到高功率单频 1.5 μm 激光^[72-74]。

2014年,德国汉诺威激光中心基于此报道了 60W单频1554nm大模场铒镱共掺光纤放大器^[59]。 其结构图如图7(a)所示,采用反向泵浦结构,在泵浦 端将1µm的种子激光耦合入EYDF,泵浦激光采用 976nmLD。在正向和后向分别测试放大后的1554nm 激光和1µm波段激光,输出功率曲线如图7(b)所示, 在210W的泵浦功率下实现了61W的单频激光输出, 其中TEM₀₀模占比高达90%。同时,1.0µm波段激光 高达40W,斜率效率在1.5µm处约为30%,在1.0µm 处约为23%。

图 7 Co-seeding 泵浦方案单频 EYDF 放大器。(a) 结构图; (b) 功率曲线图 [59]

Fig.7 Single-frequency EYDF amplifier with co-seeding pumping scheme. (a) Diagram of structure; (b) Diagram of power curve^[59]

类似的,采用 EYDF 放大单频 1.6 μm 波段激光 时,铒离子波段的 ASE 也会成为限制信号光功率提 升的重要因素^[63],1.5 μm 波段激光作为辅助信号显得 尤为重要。近年来,华南理工大学的 Guan 等在该波 长单频掺铒光纤放大器方面做出了重要贡献^[64]。在 1603 nm 单频掺铒光纤放大器中加入 C 波段闲置光 作为 co-seeding 泵浦, 获得了功率高达 52.6 W 线宽为 5.2 kHz 连续激光输出, 斜率效率高达 30.4%。

co-seeding 泵浦方式与 off-peak 泵浦面临同样的问题,需要更长的铒镱共掺光纤,降低了 SBS 阈值。

(3) In-band 泵浦

此泵浦方案是采用波长位于铒离子吸收带的激

光作为泵浦激光,如1480 nm、1532 nm 光源,避开镱 离子的吸收发射过程。由于铒离子对该波长的高吸 收可以显著缩短 EYDF 长度从而提高 SBS 阈值;另一 方面,较低的量子损耗也降低了散热系统的要求。

早在 2008年,美国 Army Research Laboratory 的 Dubinski 等首次报道了同带泵浦掺铒光纤单频放大 器^[57]。采用 1530 nm LD 包层泵浦 9.5 m 芯/包直径为 20/125 µm 单掺铒光纤,获得了 9.3 W 近衍射极限的 单频激光输出,光光转换效率 33%。次年该课题组利 用 1476 nm LD 泵浦单掺铒光纤放大单频 1560 nm 激 光,将同带泵浦光光转换效率提高到 85%^[75]。

该方法最主要的问题是高功率泵浦激光较难获得。但随着拉曼激光技术的发展,1480 nm 拉曼光纤激光器的功率输出突破 300 W^[76]。2015年,日本

Furukawa Electric 公司 Akira 等利用五阶级联拉曼光 纤激光器获得 1480 nm 激光, 再泵浦 6 m 单掺铒光 纤报道了 11.6 W 6 kHz 单频 1538 nm 光纤放大器^[68]。 2019 年, 笔者所在的课题组利用掺磷光纤作为拉曼增 益光纤, 从 1064 nm 两阶级联拉曼得到结构简单紧 凑的 1480 nm 拉曼光纤激光器, 同带泵浦单频掺铒光 纤放大器^[69], 光路结构如图 8(a) 所示。单频 1560 nm 种子源采用商用 DFB 光纤激光器, 输出功率 40 mW, 线宽小于 0.1 kHz。经过预放大器放大至 1.5 W, 与 1480 nm 光纤激光耦合到 2.5 m 保 偏芯/包直径为 12/125 µm 的 EYDF 中。功率曲线图如图 8(b) 所示, 在 60.6 W 的 1480 nm 激光泵浦下获得最高 49.8 W 的 连续单频 1560 nm 激光输出, 斜率效率高达 79.7%。 这也是该芯径 EYDF 报道的最高功率单频激光。

3 总结与展望

文中简要介绍了单频掺铒光纤激光技术的研究 进展。结合单频激光的产生腔型介绍了单频掺铒光 纤激光器的发展历程;根据脉冲和连续两种工作模式 分别介绍了高功率单频掺铒光纤放大器的研究进展, 详细分析了铒镱共掺光纤高功率放大器中有效改善 Yb ASE 问题的几种方案。

单频掺铒光纤激光技术作为发展最早、应用最广 泛的激光技术,经过几十年的发展,虽然已经实现了 数百瓦、线宽百赫兹、波长调谐范围为数十纳米的性 能,但其发展远不及镱、铥等稀土离子掺杂单频光纤 激光器迅速。究其原因主要包括:采用常规 9xx nm 大功率二极管激光泵浦时近 40% 的量子亏损、相对 而言面向高功率激光应用的掺铒光纤成熟度较低。

高功率单频掺铒光纤激光未来发展可从以下几 点展开:

(1)发展新材料

掺铒光纤激光功率受限的根本原因在于硅基光 纤铒离子的掺杂浓度受限。目前也发展出多组分软 玻璃光纤能够实现稀土离子高浓度掺杂,但多组分光 纤熔接损耗、系统稳定性等方面表现欠佳。研制与硅 基光纤相兼容的新型高掺杂光纤无疑是高功率单频 掺铒光纤激光的重要方向。

(2)发展新结构

类比单频掺镱光纤激光的发展趋势, SBS 和传输 模式不稳定 (TMI) 也将是限制单频掺铒光纤激光功 率提升的两个主要因素。增大光纤模场面积有助于 提高 SBS 阈值, 却容易产生高阶模, 不利于抑制 TMI。 需要综合考虑抑制这两个 SBS 和 TMI 的矛盾之处, 研发新型特殊结构的增益光纤以同时提高这两个非 线性阈值。

(3) 发展新泵浦激光

9xx nm 泵浦带来的巨大量子亏损以热的形式在 光纤中耗散,不利于系统稳定性。发展新型同带高功 率泵浦激光有望成为突破单频掺铒光纤激光器功率 输出的关键技术手段。

未来单频掺铒光纤激光技术将向更高功率、更窄 线宽的方向发展,面向实际应用需求,同时还需要保 证全保偏光纤结构和近衍射极限输出。

参考文献:

- Bellemare A. Continuous-wave silica-based erbium-doped fiber lasers [J]. *Progress in Quantum Electronics*, 2003, 27(4): 211-266.
- [2] Wagener J L, Wysocki P F, Digonnet M J F, et al. Effects of concentration and clusters in erbium-doped fiber lasers [J]. *Optics Letters*, 1993, 18(23): 2014-2016.
- [3] Yang Z, Li C, Xu S, et al. Single-Frequency Fiber Lasers[M]. Singapore: Springer Nature, 2019.
- [4] Morkel P R, Cowle G J, Payne D N. Travelling-wave erbium fiber ring laser with 60 kHz linewidth [J]. *Electronics Letters*, 1990, 26(10): 632-634.
- [5] Iwatsuki K, Okamura H, Saruwatari M. Wavelength-tunable single-frequency and single-polarisation Er-doped fiber ringlaser with 1.4 kHz linewidth [J]. *Electronics Letters*, 1990, 26(24): 2033-2035.
- [6] Smith D A, Maeda M W, Johnson J J, et al. Acoustically tuned erbium-doped fiber ring laser [J]. *Optics Letters*, 1991, 16(6): 387-389.
- Schmuck H, Pfeiffer T, Veith G. Widely tunable narrow linewidth erbium doped fiber ring laser [J]. *Electronics Letters*, 1991, 27(23): 2117-2119.
- [8] Zyskind J L, Sulhoff J W, Sun Y, et al. Singlemode diodepumped tunable erbium-doped fiber laser with linewidth less than 5.5 kHz [J]. *Electronics Letters*, 1991, 27(23): 2148-2149.
- [9] Cheng Y, Kringlebotn J T, Loh W H, et al. Stable singlefrequency traveling-wave fiber loop laser with integral saturableabsorber-based tracking narrow-band filter [J]. *Optics Letters*,

1995, 20(8): 875-877.

- [10] Song Y W, Havstad S A, Starodubov D, et al. 40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG [J]. *IEEE Photonics Technology Letters*, 2001, 13(11): 1167-1169.
- [11] Chen H X, Babin F, Leblanc M, et al. Widely tunable singlefrequency erbium-doped fiber lasers [J]. *IEEE Photonics Technology Letters*, 2003, 15(2): 185-187.
- [12] Chien H C, Yeh C H, Lee C C, et al. A tunable and singlefrequency s-band erbium fiber laser with saturable-absorberbased autotracking filter [J]. *Optics Communications*, 2005, 250(1): 163-167.
- [13] Yeh C H, Lin M C, Chi S. Stabilized and wavelength-tunable sband erbium-doped fiber ring laser with single-longitudinalmode operation [J]. *Optics Express*, 2005, 13(18): 6828-6832.
- [14] Polynkin A, Polynkin P, Mansuripur M, et al. Single-frequency fiber ring laser with 1 W output power at 1.5 μm [J]. Optics Express, 2005, 13(8): 3179-3184.
- [15] Yang X X, Zhan L, Shen Q S, et al. High-power singlelongitudinal-mode fiber laser with a ring Fabry-Perot resonator and a saturable absorber [J]. *IEEE Photonics Technology Letters*, 2008, 20(9-12): 879-881.
- [16] Zhang J L, Yue C Y, Schinn G W, et al. Stable single-mode compound-ring erbium-doped fiber laser [J]. Journal of Lightwave Technology, 1996, 14(1): 104-109.
- [17] Lee C C, Chi S. Single-longitudinal-mode operation of a gratingbased fiber-ring laser using self-injection feedback [J]. *Optics Letters*, 2000, 25(24): 1774-1776.
- [18] Lee C C, Chen Y K, Liaw S K. Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission [J]. *Optics Letters*, 1998, 23(5): 358-360.
- [19] Xin Z, Ning Hua Z, Liang X, et al. Stabilized and tunable singlefrequency erbium-doped fiber ring laser employing external injection locking [J]. *Journal of Lightwave Technology*, 2007, 25(4): 1027-1033.
- Yeh C H, Huang T T, Chien H C, et al. Tunable S-band erbiumdoped triple-ring laser with single-longitudinal-mode operation
 [J]. *Optics Express*, 2007, 15(2): 382-386.
- [21] Pan S, Yao J. A Wavelength-tunable single-longitudinal-mode fiber ring laser with a large sidemode suppression and improved stability [J]. *IEEE Photonics Technology Letters*, 2010, 22(6): 413-415.

- [22] Salehiomran A, Rochette M. An all-pole-type cavity based on smith predictor to achieve single longitudinal mode fiber lasers
 [J]. *IEEE Photonics Technology Letters*, 2013, 25(21): 2141-2144.
- [23] Feng T, Yan F, Peng W, et al. A high stability wavelengthtunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure [J]. *Laser Physics Letters*, 2014, 11(4): 045101.
- [24] Yang C, Cen X, Xu S, et al. Research progress of single-frequency fiber laser [J]. *Acta Optica Sinica*, 2021, 41(1): 0114002. (in Chinese)
- [25] Yang C, Xu S, Li C, et al. Research progress of 1.5 μm-band CW single-frequency fiber laser [J]. *Scientia Sinica Chimica*, 2013, 43(11): 1407-1417. (in Chinese)
- [26] Fu S J, Shi W, Feng Y, et al. Review of recent progress on single-frequency fiber lasers invited [J]. *Journal of the Optical Society of America B-Optical Physics*, 2017, 34(3): A49-A62.
- [27] Lai W, Ma P, Xiao H, et al. High-power narrow-linewidth fiber laser technology [J]. *High Power Laser and Particle Beams*, 2020, 32(12): 121001. (in Chinese)
- [28] Ball G A, Morey W W, Glenn W H. Standing-wave monomode erbium fiber laser [J]. *IEEE Photonics Technology Letters*, 1991, 3(7): 613-615.
- [29] Ball G A, Morey W W. Compression-tuned single-frequency Bragg grating fiber laser [J]. *Optics Letters*, 1994, 19(23): 1979-1981.
- [30] Zhang Y N, Zhang Y F, Zhao Q L, et al. Ultra-narrow linewidth full C-band tunable single-frequency linear-polarization fiber laser [J]. *Optics Express*, 2016, 24(23): 26209-26214.
- [31] Yang C S, Guan X C, Lin W, et al. Efficient 1.6 μm linearlypolarized single-frequency phosphate glass fiber laser [J]. *Optics Express*, 2017, 25(23): 29078-29085.
- [32] Spiegelberg C, Geng J, Hu Y, et al. Compact 100 mW fiber laser with 2 kHz linewidth [C]// Optical Fiber Communications Conference, 2003, 3: PD45-P1.
- [33] Spiegelberg C, Geng J H, Hu Y D, et al. Low-noise narrowlinewidth fiber laser at 1550 nm (June 2003) [J]. Journal of Lightwave Technology, 2004, 22(1): 57-62.
- [34] Polynkin P, Polynkin A, Mansuripur M, et al. Single-frequency laser oscillator with watts-level output power at 1.5 μm by use of a twisted-mode technique [J]. *Optics Letters*, 2005, 30(20): 2745-2747.

- [35] Qiu T, Suzuki S, Schulzgen A, et al. Generation of watt-level single-longitudinal-mode output from cladding-pumped short fiber lasers [J]. *Optics Letters*, 2005, 30(20): 2748-2750.
- [36] Schulzgen A, Li L, Temyanko V L, et al. Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber [J]. *Optics Express*, 2006, 14(16): 7087-7092.
- [37] Pan Z, Cai H, Meng L, et al. Single-frequency phosphate glass fiber laser with 100-mw output power at 1535 nm and its polarization characteristics [J]. *Chinese Optics Letters*, 2010, 8(1): 52-54.
- [38] Xu S H, Yang Z M, Liu T, et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 μm [J]. *Optics Express*, 2010, 18(2): 1249-1254.
- [39] Chang S H, Hwang I K, Kim B Y, et al. Widely tunable singlefrequency Er-doped fiber laser with long linear cavity [J]. *IEEE Photonics Technology Letters*, 2001, 13(4): 287-289.
- [40] Kaneda Y, Hu Y, Spiegelberg C, et al. Single-frequency, allfiber Q-switched laser at 1550 nm[C]// Proceedings of the Advanced Solid-State Photonics (TOPS), 2004.
- [41] Zhou R, Shi W, Petersen E, et al. Transform-limited, injection seeded, Q-switched, ring cavity fiber laser [J]. Journal of Lightwave Technology, 2012, 30(16): 2589-2595.
- [42] Wan H D, Wu Z W, Sun X H. A pulsed single-longitudinalmode fiber laser based on gain control of pulse-injection-locked cavity [J]. *Optics Laser Technology*, 2013, 48: 167-170.
- [43] Shi W, Leigh M A, Zong J, et al. High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in The C-Band and frequency conversion to THz generation [J]. *IEEE Journal* of Selected Topics in Quantum Electronics, 2009, 15(2): 377-384.
- [44] Leigh M, Shi W, Zong J, et al. High peak power single frequency pulses using a short polarization-maintaining phosphate glass fiber with a large core [J]. *Applied Physics Letters*, 2008, 92(18): 1-3.
- [45] Shi W, Petersen E B, Leigh M, et al. High SBS-threshold singlemode single-frequency monolithic pulsed fiber laser in the Cband [J]. *Opt Express*, 2009, 17(10): 8237-8245.
- [46] Shi W, Petersen E B, Yao Z D, et al. Kilowatt-level stimulated-Brillouin-scattering-threshold monolithic transform-limited 100 ns pulsed fiber laser at 1530 nm [J]. *Optics Letters*, 2010, 35(14): 2418-2420.

- [47] Petersen E, Shi W, Chavez-pirson A, et al. High peak-power single-frequency pulses using multiple stage, large core phosphate fibers and preshaped pulses [J]. *Applied Optics*, 2012, 51(5): 531-534.
- [48] Liu Y, Liu J Q, Chen W B. Eye-safe, single-frequency pulsed all-fiber laser for Doppler wind lidar [J]. *Chinese Optics Letters*, 2011, 9(9): 090604.
- [49] Lee W, Geng J, Jiang S, et al. 1.8 mJ, 3.5 kW single-frequency optica pulses at 1572 nm generated from an all-fiber MOPA system [J]. *Optics Letters*, 2018, 43(10): 2264-2267.
- [50] Zhang X, Diao W F, Liu Y, et al. Eye-safe single-frequency single-mode polarized all-fiber pulsed laser with peak power of 361 W [J]. *Applied Optics*, 2014, 53(11): 2465-2469.
- [51] Ball G A, Holton C E, Hullallen G, et al. 60-mW 1.5 μm singlefrequency low-noise fiber laser MOPA [J]. *IEEE Photonics Technology Letters*, 1994, 6(2): 192-194.
- [52] Pan J J, Shi Y. 166-mW single-frequency output power interactive fiber lasers with low noise [J]. *IEEE Photonics Technology Letters*, 1999, 11(1): 36-38.
- [53] Jeong Y, Salm J K, Richardson D J, et al. Seeded erbium/ytterbium codoped fiber amplifier source with 87 W of single-frequency output power [J]. *Electronics Letters*, 2003, 39(24): 1717-1719.
- [54] Alam S U, Wixey R, Hickey L, et al. High power, single-mode, single-frequency DFB fiber laser at 1550 nm in MOPA configuration[C]//Proceedings of the Conference on Lasers and Electro-Optics, 2004 (CLEO), F, 2004.
- [55] Alegria C, Jeong Y, Codemard C, et al. 83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium codoped fiber [J]. *IEEE Photonics Technology Letters*, 2004, 16(8): 1825-1827.
- [56] Jeong Y, Sahu J K, Soh D B S, et al. High-power tunable singlefrequency single-mode erbium: ytterbium codoped large-core fiber master-oscillator power amplifier source [J]. *Optics Letters*, 2005, 30(22): 2997-2999.
- [57] Dubinskii M, Zhang J, Kudryashov I. Single-frequency, Yb-free, resonantly cladding-pumped large mode area Er fiber amplifier for power scaling [J]. *Applied Physics Letters*, 2008, 93(3): 1-3.
- [58] Yang C S, Xu S H, Mo S P, et al. 10.9 W kHz-linewidth onestage all-fiber linearly-polarized MOPA Laser at 1560 nm [J]. *Optics Express*, 2013, 21(10): 12546-12551.
- [59] Steinke M, Croteau A, Pare C, et al. Co-seeded Er³⁺: Yb³⁺ single frequency fiber amplifier with 60 w output power and over 90%

TEM₀₀ content [J]. Optics Express, 2014, 22(14): 16722-16730.

- [60] Bai X L, Sheng Q, Zhang H W, et al. High-power all-fiber single-frequency erbium-ytterbium co-doped fiber master oscillator power amplifier [J]. *IEEE Photonics Journal*, 2015, 7(6): 6.
- [61] Creeden D, Pretorius H, Limongelli J, et al. Single frequency 1560 nm Er: Yb fiber amplifier with 207 W output power and 50.5% slope efficiency[C]//Proceedings of the Conference on Fiber Lasers XIII -Technology, Systems, and Applications, F, 2016.
- [62] De Varona O, Fittkau W, Booker P, et al. Single-frequency fiber amplifier at 1.5 μm with 100 W in the linearly-polarized TEM₀₀ Mode for next-generation gravitational wave detectors [J].
 Optics Express, 2017, 25(21): 24880-24892.
- [63] Yang C S, Guan X C, Zhao Q L, et al. 15 W high OSNR kHzlinewidth linearly-polarized all-fiber single-frequency MOPA a 1.6 μm [J]. *Optics Express*, 2018, 26(10): 12863-12869.
- [64] Guan X C, Zhao Q L, Lin W, et al. High-efficiency and highpower single-frequency fiber laser at 1.6 μm based on cascaded energy-transfer pumping [J]. *Photonics Research*, 2020, 8(3): 414-420.
- [65] Xue M Y, Gao C X, Niu L Q, et al. A 51.3 W, sub-kHzlinewidth linearly polarized all-fiber laser at 1560 nm [J]. *Laser Physics*, 2020, 30(3): 035104.
- [66] Darwich D, Bardin Y V, Goeppner M, et al. Ultralow-intensity noise, 10 W all-fiber single-frequency tunable laser system around 1550 nm [J]. *Applied Optics*, 2021, 60(27): 8550-8555.
- [67] Kuhn V, Kracht D, Neumann J, et al. Er-doped single-frequency photonic crystal fiber amplifier with 70 W of output power for gravitational wave detection[C]//Proceedings of the Conference on Fiber Lasers IX - Technology, Systems, and Applications, 2012.
- [68] Fujisaki A, Matsushita S, Kasai K, et al. An 11.6 W output, 6 kHz linewidth, single-polarization EDFA-MOPA system with a ${}^{13}C_2H_2$ frequency stabilized fiber laser [J]. *Optics Express*, 2015, 23(2): 1081-1087.
- [69] Dong J Y, Zeng X, Cui S Z, et al. More than 20 W fiber-based continuous-wave single frequency laser at 780 nm [J]. *Optics Express*, 2019, 27(24): 35362-35367.
- [70] Alam S, Yla-jarkko K H, Grudinin A B. High power, single frequency DFB fiber laser with low relative intensity noise[C]// Proceedings of the 2003 Conference on Lasers and Electro-Optics Europe (CLEO/Europe 2003) (IEEE Cat No03 TH8666),

2003: 618.

- [71] De Varona O, Steinke M, Neumann J, et al. All-fiber, single-frequency, and single-mode Er^{3+:} Yb³⁺ fiber amplifier at 1556 nm core-pumped at 1018 nm [J]. *Optics Letters*, 2018, 43(11): 2632-2635.
- [72] Wang S, Liu Z, Zhao Z, et al. 18 W Single-frequency 1550 nm
 Er: Yb co-doped fiber amplifier cladding-pumping at 1018 nm
 [J]. *Optics Communications*, 2020, 464: 125498.
- [73] Kuhn V, Kracht D, Neumann J, et al. Dependence of Er: Ybcodoped 1.5 μm amplifier on wavelength-tuned auxiliary seed signal at 1 μm wavelength [J]. *Optics Letters*, 2010, 35(24):

4105-4107.

- [74] Sobon G, Sliwinska D, Kaczmarek P, et al. Er/Yb co-doped fiber amplifier with wavelength-tuned Yb-band ring resonator [J]. *Optics Communications*, 2012, 285(18): 3816-3819.
- [75] Dubinskii M, Zhang J, Ter-mikirtychev V. Record-efficient, resonantly-pumped, Er-doped single mode fiber amplifier [J]. *Electronics Letters*, 2009, 45(8): 400-401.
- [76] Supradeepa V R, Nicholson J W. Power scaling of highefficiency 1.5 μm cascaded Raman fiber lasers [J]. Optics Letters, 2013, 38(14): 2538-2541.